avangard-pressa.ru

Раздел «Отношения. Функции» - Математика

Вариант № 1

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения не рефлексивного, не симметричного и транзитивного.

3. Дана функция f(x) = x2 + ex, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 2

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения не симметричного, но рефлексивного и транзитивного.

3. Дана функция f(x) = x2 + e-x, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 3

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения не транзитивного, но рефлексивного и симметричного.

3. Дана функция f(x) = x + ex, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 4

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством x2 + y2 = 25?

3. Дана функция f(x) = x3 + ex, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 5

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения не симметричного, не рефлексивного и транзитивного.

3. Дана функция f(x) = x + e--x, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 6

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения транзитивного, рефлексивного и антисимметричного.

3. Дана функция f(x) = x + ex, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 7

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения рефлексивного, симметричного и транзитивного.

3. Дана функция f(x) = x 2 + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 8

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения транзитивного, рефлексивного и антисимметричного.

3. Дана функция f(x) = x + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 9

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения транзитивного, рефлексивного и симметричного.

3. Дана функция f(x) = sinx + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 10

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством x = 2y?

3. Дана функция f(x) = lnx + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 11

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения не транзитивного, не рефлексивного и не симметричного.

3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и являющейся сюръективной, инъективной, биективной.

Вариант № 12

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством x + y = 100?

3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и не являющейся сюръективной, инъективной, биективной.

Вариант № 13

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения не транзитивного, не рефлексивного и симметричного.

3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и являющейся сюръективной, но не инъективной.

Вариант № 14

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения рефлексивного, симметричного и транзитивного.

3. Дана функция f(x) = x 2 , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 15

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения эквивалентности.

3. Дана функция f(x) = x 2 + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 16

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения частичного порядка на множестве целых чисел..

3. Дана функция f(x) = x 2 +lnx, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 17

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения транзитивного и симметричного.

3. Дана функция f(x) = x + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 18.

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения рефлексивного и транзитивного.

3. Дана функция f(x) = x 2 + 2x, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 19

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством x 2 – y2 = 0?

3. Дана функция f(x) = 2x + , отображающая множество положительных действительных чисел во множество всех действительных чисел. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 20

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения не рефлексивного, не симметричного и не транзитивного.

3. Дана функция f(x) = x3ex, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 21

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения частичного порядка на множестве треугольников на плоскости.

3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и не являющейся сюръективной, инъективной, биективной.

Вариант № 22

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством x = – y?

3. Дана функция f(x) = lnx + , отображающая множество положительных действительных чисел во множество всех действительных чисел. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 23

1. Задано бинарное отношение r = {, , , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Будет ли отношением частичного полрядка на множестве действительных чисел отношение xry, задаваемое неравенством x 2 – y2 £ 0?

3. Дана функция f(x) = ex + , отображающая множество положительных действительных чисел на множество положительных действительных чисел. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 24

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения не транзитивного, не рефлексивного и симметричного.

3. Привести пример функции f(x), отображающей множество действительных чисел R во множество неотрицательных действительных чисел, R® [0, ¥) и являющейся сюръективной, но не инъективной.

Вариант № 25

1. Задано бинарное отношение r = {, , , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое неравенством x £ y?

3. Дана функция f(x) = lnx + 2x, отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 26

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения не транзитивного, не рефлексивного и не симметричного.

3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и являющейся сюръективной и неинъективной.

Вариант № 27

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Будет ли отношением эквивалентности на множестве действительных чисел отношение xry, задаваемое равенством xy = 100?

3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и не являющейся сюръективной, инъективной, биективной.

Вариант № 28

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения не транзитивного, не рефлексивного и симметричного.

3. Привести пример функции f(x), отображающей множество действительных чисел R во множество действительных чисел, R® R и являющейся сюръективной, но не инъективной.

Вариант № 29

1. Задано бинарное отношение r = {, , , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения частичного порядка.

3. Дана функция f(x) = x 2 , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Вариант № 30

1. Задано бинарное отношение r = {, , , , }.

Найти D(r), R(r), r r, r -1. Проверить, будет ли отношение r рефлексивным, симметричным, антисимметричным, транзитивным?

2. Привести пример отношения эквивалентности.

3. Дана функция f(x) = x 2 + , отображающая множество действительных чисел R во множество действительных чисел, R® R. Является ли эта функция сюръективной, инъективной, биективной? Почему?

Раздел «Графы»

1. Описать граф, заданный матрицей смежности, используя как можно больше характеристик. Составить матрицу инцидентности и связности (сильной связности).

2. Пользуясь алгоритмом Форда-Беллмана, найти минимальный путь из x1 в x7 в ориентированном графе, заданном матрицей весов.

3. Пользуясь алгоритмом Краскала, найти минимальное остовное дерево для графа, заданного матрицей длин ребер.

Варианты заданий

1.1. 0 1 1 0 1 1 2. ¥ 4 6 12 ¥ ¥ ¥ 3. ¥ 12 6 20 14

1 0 0 1 0 0 ¥ ¥ ¥ 13 7 ¥ ¥ 12 ¥ 2 4 6

1 0 0 0 1 0 ¥ ¥ ¥ 5 ¥ 3 ¥ 6 2 ¥ 10 12

0 1 0 0 1 0 ¥ ¥ ¥ ¥ 10 9 ¥ 20 4 10 ¥ 6

1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 8 14 6 12 6 ¥

1 0 0 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 11

¥ ¥ ¥ ¥ ¥ ¥ ¥

2.1. 0 0 0 0 0 1 2. ¥ 1 3 9 ¥ ¥ ¥ 3. ¥ 1 ¥ 4 5

0 0 1 1 1 0 ¥ ¥ ¥ 10 4 ¥ ¥ 1 ¥ 2 ¥ 1

0 0 0 0 0 0 ¥ ¥ ¥ 2 ¥ 1 ¥ ¥ 2 ¥ 1 1

1 0 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 4 ¥ 1 ¥ 3

1 0 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 5 1 1 3 ¥

1 0 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8

¥ ¥ ¥ ¥ ¥ ¥ ¥

3.1. 0 1 0 1 0 0 2. ¥ 3 5 11 ¥ ¥ ¥ 3. ¥ 6 3 10 7

1 0 0 1 0 0 ¥ ¥ ¥ 12 6 ¥ ¥ 6 ¥ 1 2 3

0 0 0 0 1 1 ¥ ¥ ¥ 3 ¥ 2 ¥ 3 1 ¥ 5 6

1 1 0 0 1 1 ¥ ¥ ¥ ¥ 9 8 ¥ 10 2 5 ¥ 3

0 0 1 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 7 7 3 6 3 ¥

0 0 1 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 10

¥ ¥ ¥ ¥ ¥ ¥ ¥

4.1.0 0 0 0 0 1 2. ¥ ¥ 5 4 2 2 9 3. ¥ 7 2 11 7

1 0 1 0 1 1 ¥ ¥ 1 1 ¥ 1 1 7 ¥ 3 ¥ 4

1 0 0 0 0 0 2 ¥ ¥ 1 1 ¥ 3 2 3 ¥ 1 5

0 0 1 0 0 1 ¥ 2 1 ¥ 1 ¥ ¥ 11 ¥ 1 ¥ 3

0 1 1 1 0 0 ¥ ¥ 2 2 ¥ 1 6 7 4 5 3 ¥

0 0 1 0 0 0 1 5 ¥ 1 1 ¥ ¥

2 ¥ 1 ¥ 1 2 ¥

5.1. 0 0 0 1 1 0 2. ¥ 4 ¥ ¥ 3 1 ¥ 3. ¥ 2 ¥ 5 5

0 0 0 1 0 1 3 ¥ 2 1 ¥ ¥ 4 2 ¥ 8 ¥ 7

1 0 0 0 0 0 1 1 ¥ ¥ ¥ ¥ 1 ¥ 8 ¥ 10 1

0 1 0 0 0 1 ¥ 3 1 ¥ 1 ¥ ¥ 5 ¥ 10 ¥ 13

1 0 0 0 0 0 ¥ ¥ 2 ¥ ¥ 1 5 5 7 1 13 ¥

0 1 0 1 0 0 ¥ 3 ¥ 2 2 ¥ ¥

¥ ¥ 2 ¥ ¥ 2 ¥

6.1. 0 0 1 0 1 0 2. ¥ ¥ 9 ¥ ¥ 2 12 3. ¥ 1 5 4 5

0 0 1 1 1 1 1 ¥ ¥ ¥ 1 2 4 1 ¥ 2 6 1

1 1 0 0 1 0 2 1 ¥ ¥ 1 ¥ 2 5 2 ¥ 1 7

0 1 0 0 0 1 ¥ 1 1 ¥ ¥ 1 ¥ 4 6 1 ¥ 4

1 1 1 0 0 0 1 2 ¥ 2 ¥ ¥ ¥ 5 1 7 4 ¥

0 1 0 1 0 0 ¥ ¥ ¥ ¥ 1 ¥ 8

¥ 2 1 ¥ 1 2 ¥

7.1. 0 0 1 1 0 0 2. ¥ 3 4 9 ¥ ¥ ¥ 3. ¥ 4 3 5 6

1 0 0 0 0 1 12 ¥ ¥ 10 4 ¥ ¥ 4 ¥ 2 ¥ 1

1 0 0 0 1 0 ¥ ¥ ¥ 2 ¥ 1 ¥ 3 2 ¥ 1 1

0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 5 ¥ 1 ¥ 3

0 0 1 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 6 1 1 3 ¥

0 1 0 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8

¥ ¥ ¥ ¥ ¥ ¥ ¥

8.1. 0 1 1 0 1 1 2. ¥ 2 5 8 9 ¥ ¥ 3. ¥ 1 3 4 5

1 0 1 1 0 1 ¥ ¥ ¥ 10 4 ¥ ¥ 1 ¥ 2 9 1

1 1 0 0 1 1 5 3 ¥ 2 1 ¥ ¥ 3 2 ¥ 1 1

0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 4 9 1 ¥ 3

1 0 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 5 1 1 3 ¥

1 1 1 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 9

¥ ¥ ¥ ¥ ¥ ¥ ¥

9.1. 0 1 0 1 1 1 2. ¥ 2 5 14 ¥ ¥ ¥ 3. ¥ 5 3 10 7

1 0 0 1 0 0 11 ¥ ¥ 12 6 ¥ ¥ 5 ¥ 1 2 4

0 0 0 1 1 0 ¥ ¥ ¥ 3 ¥ 2 ¥ 3 1 ¥ 5 6

1 1 1 0 1 0 ¥ ¥ ¥ ¥ 9 8 ¥ 10 2 5 ¥ 3

1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 7 7 4 6 3 ¥

1 0 0 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 10

¥ ¥ ¥ ¥ ¥ ¥ ¥

10.10 1 1 0 1 1 2. ¥ ¥ 5 4 2 3 9 3. ¥ 7 2 11 7

1 0 0 1 1 1 ¥ ¥ 1 1 ¥ 1 6 7 ¥ 3 ¥ 4

1 0 0 0 1 0 4 ¥ ¥ 1 1 ¥ 3 2 3 ¥ 1 5

0 1 0 0 0 1 ¥ 2 1 ¥ 1 ¥ ¥ 11 ¥ 1 ¥ 3

1 1 1 0 0 1 ¥ ¥ 2 2 ¥ 1 6 7 4 5 3 ¥

1 1 0 1 1 0 1 5 ¥ 1 1 ¥ ¥

2 ¥ 1 ¥ 1 2 ¥

11.1. 0 0 1 0 1 0 2. ¥ 4 9 ¥ 3 1 ¥ 3. ¥ 1 ¥ 4 5

0 0 0 1 0 1 3 ¥ 2 1 ¥ ¥ 4 1 ¥ 8 ¥ 7

1 0 0 0 1 0 1 1 ¥ ¥ 10 ¥ 1 ¥ 8 ¥ 10 1

0 1 0 0 0 1 ¥ 3 1 ¥ 1 ¥ ¥ 4 ¥ 10 ¥ 13

1 0 1 0 0 0 ¥ ¥ 2 ¥ ¥ 1 5 5 7 1 13 ¥

0 1 0 1 0 0 ¥ 3 ¥ 1 2 ¥ ¥

¥ ¥ 2 ¥ ¥ 2 ¥

12.1 0 0 1 0 1 0 2. ¥ ¥ 9 ¥ 10 2 12 3. ¥ 1 5 4 6

0 0 0 1 0 1 1 ¥ ¥ ¥ 1 2 4 1 ¥ 2 6 3

1 1 0 0 1 1 2 1 ¥ ¥ 1 ¥ 2 5 2 ¥ 1 7

0 0 0 0 0 0 ¥ 1 1 ¥ ¥ 1 15 4 6 1 ¥ 4

1 1 1 0 0 0 1 2 ¥ 2 ¥ ¥ ¥ 6 3 7 4 ¥

0 1 0 1 0 0 ¥ ¥ ¥ ¥ 1 ¥ 8

¥ 2 1 ¥ 1 2 ¥

13.1. 0 0 0 0 0 0 2. ¥ 5 6 15 ¥ ¥ ¥ 3. ¥ 12 6 10 4

1 0 0 1 0 1 ¥ ¥ ¥ 13 7 ¥ ¥ 12 ¥ 2 5 6

1 0 0 0 1 0 ¥ ¥ ¥ 4 ¥ 3 ¥ 6 2 ¥ 10 12

1 1 1 0 0 0 ¥ ¥ ¥ ¥ 10 9 ¥ 10 5 10 ¥ 6

1 1 0 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8 4 6 12 6 ¥

0 1 0 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 11

¥ ¥ ¥ ¥ ¥ ¥ ¥

14.1. 0 0 1 1 0 0 2. ¥ 2 3 9 ¥ ¥ ¥ 3. ¥ 3 2 4 5

1 0 0 0 0 1 12 ¥ ¥ 10 4 ¥ ¥ 3 ¥ 2 ¥ 1

1 0 0 0 1 0 ¥ ¥ ¥ 2 ¥ 1 ¥ 2 2 ¥ 1 1

0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 4 ¥ 1 ¥ 3

0 0 1 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 5 1 1 3 ¥

0 1 0 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8

¥ ¥ ¥ ¥ ¥ ¥ ¥

15.1. 0 1 0 1 0 0 2. ¥ 2 5 10 ¥ ¥ ¥ 3. ¥ 6 3 10 4

1 0 0 1 0 0 ¥ ¥ ¥ 12 6 ¥ ¥ 6 ¥ 1 2 3

0 0 0 0 1 1 ¥ ¥ ¥ 3 ¥ 1 ¥ 3 1 ¥ 8 6

1 1 0 0 1 1 ¥ ¥ ¥ ¥ 9 8 ¥ 10 2 8 ¥ 3

0 0 1 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 7 4 3 6 3 ¥

0 0 1 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 10

¥ ¥ ¥ ¥ ¥ ¥ ¥

16.1.0 0 0 0 1 1 2. ¥ ¥ 5 4 2 2 10 3. ¥ 4 2 10 6

0 0 1 1 0 0 ¥ ¥ 2 1 ¥ 2 1 4 ¥ 3 ¥ 4

0 1 0 0 1 0 2 ¥ ¥ 1 1 ¥ 3 2 3 ¥ 1 5

0 1 0 0 0 1 ¥ 2 1 ¥ 1 ¥ ¥ 10 ¥ 1 ¥ 3

1 0 1 0 0 0 ¥ ¥ 2 2 ¥ 1 6 6 4 5 3 ¥

1 0 0 1 0 0 1 5 ¥ 1 1 ¥ ¥

2 ¥ 1 ¥ 1 2 ¥

17.1 0 0 1 0 1 0 2. ¥ 4 9 8 3 1 ¥ 3. ¥ 2 ¥ 3 5

0 0 0 1 0 1 3 ¥ 2 1 ¥ ¥ 4 2 ¥ 8 ¥ 7

1 0 0 0 1 0 1 1 ¥ ¥ ¥ ¥ 1 ¥ 8 ¥ 10 1

0 1 0 0 0 1 ¥ 3 1 ¥ 1 ¥ ¥ 3 ¥ 10 ¥ 12

1 0 1 0 0 0 ¥ ¥ 2 ¥ ¥ 1 5 5 7 1 12 ¥

0 1 0 1 0 0 ¥ 3 ¥ 2 2 ¥ ¥

¥ ¥ 2 ¥ ¥ 2 ¥

18.1. 0 0 1 0 1 0 2. ¥ ¥ 9 ¥ 10 2 12 3. ¥ 1 3 4 5

0 0 0 0 0 0 1 ¥ ¥ ¥ 1 2 4 1 ¥ 2 6 8

1 0 0 0 1 0 2 1 ¥ ¥ 1 ¥ 2 3 2 ¥ 1 7

0 1 0 0 0 1 ¥ 1 1 ¥ ¥ 1 ¥ 4 6 1 ¥ 4

1 0 1 0 0 0 1 2 9 2 ¥ ¥ ¥ 5 8 7 4 ¥

0 1 0 1 0 0 ¥ ¥ ¥ ¥ 1 ¥ 8

¥ 2 1 ¥ 1 2 ¥

19.1. 0 1 1 0 1 1 2. ¥ 3 5 12 20 ¥ ¥ 3. ¥ 1 6 5 14

1 0 0 1 0 0 ¥ ¥ ¥ 13 8 ¥ ¥ 1 ¥ 3 4 6

1 0 0 1 1 1 ¥ ¥ ¥ 5 ¥ 3 ¥ 6 3 ¥ 10 12

0 1 1 0 1 1 ¥ ¥ ¥ ¥ 10 9 ¥ 5 4 10 ¥ 6

1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 8 14 6 12 6 ¥

1 0 1 1 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 11

¥ ¥ ¥ ¥ ¥ ¥ ¥

20.1. 0 1 0 0 1 0 2. ¥ 1 5 7 9 ¥ ¥ 3. ¥ 6 3 4 5

1 0 0 1 0 0 ¥ ¥ ¥ 10 4 ¥ ¥ 6 ¥ 2 9 1

1 0 0 0 1 1 5 3 ¥ ¥ 1 ¥ ¥ 3 2 ¥ 1 4

0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 4 9 1 ¥ 3

0 0 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 4 5 1 4 3 ¥

0 1 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 9

¥ ¥ ¥ ¥ ¥ ¥ ¥

21.1. 0 1 0 1 1 1 2. ¥ 1 5 15 ¥ ¥ ¥ 3. ¥ 5 3 6 7

1 0 0 1 0 0 ¥ ¥ 11 12 6 ¥ ¥ 5 ¥ 1 2 4

0 0 0 1 1 0 ¥ ¥ ¥ 3 ¥ 2 ¥ 3 1 ¥ 5 6

1 1 1 0 1 0 ¥ ¥ ¥ ¥ 9 8 ¥ 6 2 5 ¥ 3

1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 7 7 4 6 3 ¥

1 0 0 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 10

¥ ¥ ¥ ¥ ¥ ¥ ¥

22.10 0 1 0 1 0 2. ¥ ¥ 3 4 1 5 9 3. ¥ 7 2 11 3

0 0 0 0 0 0 ¥ ¥ 1 2 ¥ 1 6 7 ¥ 3 ¥ 4

0 1 0 0 1 1 4 ¥ ¥ 2 1 ¥ 3 2 3 ¥ 1 5

0 1 0 0 0 1 ¥ 2 3 ¥ 1 ¥ ¥ 11 ¥ 1 ¥ 3

1 1 1 0 0 0 ¥ ¥ 2 2 ¥ 1 6 3 4 5 3 ¥

0 0 0 1 1 0 1 5 ¥ 1 1 ¥ ¥

2 ¥ 1 ¥ 1 2 ¥

23.1. 0 0 1 0 1 0 2. ¥ 4 9 ¥ 3 1 ¥ 3. ¥ 1 9 4 5

0 0 0 1 0 1 3 ¥ 2 1 ¥ ¥ 4 1 ¥ 8 ¥ 7

1 0 0 0 1 0 1 1 ¥ ¥ 10 14 1 9 8 ¥ 10 1

0 1 0 0 0 1 ¥ 3 1 ¥ 1 ¥ ¥ 4 ¥ 10 ¥ 13

1 0 1 0 0 0 ¥ ¥ 2 ¥ ¥ 1 5 5 7 1 13 ¥

0 1 0 1 0 0 ¥ 3 ¥ 1 2 ¥ ¥

¥ ¥ 2 ¥ ¥ 2 ¥

24.1 0 0 1 0 1 0 2. ¥ ¥ 8 ¥ 10 3 12 3. ¥ 3 2 4 6

0 0 0 1 0 0 1 ¥ ¥ ¥ 1 2 3 3 ¥ 5 6 3

0 1 0 0 1 0 2 1 ¥ ¥ 1 ¥ 2 2 5 ¥ 1 7

0 0 0 0 0 1 ¥ 1 1 ¥ ¥ 1 15 4 6 1 ¥ 4

0 1 1 0 0 0 1 2 ¥ 2 ¥ ¥ ¥ 6 3 7 4 ¥

0 1 0 0 0 0 ¥ ¥ ¥ ¥ 1 ¥ 8

¥ 2 1 ¥ 1 2 ¥

25.1.0 0 1 0 0 1 2. ¥ ¥ 5 4 2 2 10 3. ¥ 1 2 8 5

0 0 1 1 1 1 ¥ ¥ 2 1 ¥ 2 1 1 ¥ 3 ¥ 4

1 1 0 0 0 0 2 ¥ ¥ 1 1 ¥ 3 2 3 ¥ 1 5

0 1 0 0 0 1 12 2 1 ¥ 1 ¥ ¥ 8 ¥ 1 ¥ 3

0 1 0 0 0 1 ¥ ¥ 2 2 ¥ 1 6 5 4 5 3 ¥

1 1 0 1 1 0 1 5 ¥ 1 1 ¥ ¥

2 ¥ 1 ¥ 1 2 ¥

26.1. 0 0 0 0 1 0 2. ¥ 4 9 8 3 2 ¥ 3. ¥ 2 9 3 5

0 0 0 1 0 0 3 ¥ 2 1 ¥ ¥ 5 2 ¥ 8 ¥ 7

1 0 0 0 1 0 2 1 ¥ ¥ ¥ ¥ 1 9 8 ¥ 10 1

0 1 0 0 0 1 ¥ 3 1 ¥ 1 ¥ ¥ 3 ¥ 10 ¥ 12

0 0 0 0 0 0 ¥ ¥ 2 ¥ ¥ 1 5 5 7 1 12 ¥

0 1 0 0 0 0 ¥ 3 ¥ 2 2 ¥ ¥

¥ ¥ 2 ¥ ¥ 2 ¥

27.1. 0 0 1 0 1 0 2. ¥ ¥ 9 ¥ 8 1 12 3. ¥ 1 3 7 2

0 0 1 1 1 1 1 ¥ ¥ ¥ 2 2 4 1 ¥ 5 6 8

1 1 0 0 1 0 2 1 ¥ ¥ 1 ¥ 2 3 5 ¥ 1 7

0 1 0 0 0 1 ¥ 1 1 ¥ ¥ 1 ¥ 7 6 1 ¥ 4

1 1 1 0 0 0 1 2 9 2 ¥ ¥ ¥ 2 8 7 4 ¥

0 1 0 1 0 0 ¥ ¥ ¥ ¥ 1 ¥ 8

¥ 2 1 ¥ 1 2 ¥

28.1. 0 1 1 0 1 1 2. ¥ 3 5 12 20 ¥ ¥ 3. ¥ 1 6 5 14

1 0 0 1 0 0 ¥ ¥ ¥ 13 8 ¥ ¥ 1 ¥ 3 4 6

1 0 0 1 1 1 ¥ ¥ ¥ 5 ¥ 3 ¥ 6 3 ¥ 10 12

0 1 1 0 1 1 ¥ ¥ ¥ ¥ 10 9 ¥ 5 4 10 ¥ 6

1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 8 14 6 12 6 ¥

1 0 1 1 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 11

¥ ¥ ¥ ¥ ¥ ¥ ¥

29.1. 0 1 0 0 1 0 2. ¥ 1 8 6 7 ¥ ¥ 3. ¥ 2 3 4 5

1 0 0 1 0 0 ¥ ¥ ¥ 10 4 ¥ ¥ 2 ¥ 6 9 1

1 0 0 0 1 1 5 3 ¥ ¥ 1 ¥ ¥ 3 6 ¥ 1 4

0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 4 9 1 ¥ 3

0 0 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 4 5 1 4 3 ¥

0 1 1 0 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 9

¥ ¥ ¥ ¥ ¥ ¥ ¥

30.1. 0 1 0 1 1 1 2. ¥ 2 4 13 ¥ ¥ ¥ 3. ¥ 5 3 6 4

1 0 0 1 0 0 ¥ ¥ 11 12 6 ¥ ¥ 5 ¥ 1 2 7

0 0 0 1 1 0 ¥ ¥ ¥ 3 ¥ 2 ¥ 3 1 ¥ 5 6

1 1 1 0 1 0 ¥ ¥ ¥ ¥ 9 8 ¥ 6 2 5 ¥ 3

1 0 1 1 0 1 ¥ ¥ ¥ ¥ ¥ ¥ 7 4 7 6 3 ¥

1 0 0 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 10

¥ ¥ ¥ ¥ ¥ ¥ ¥